Microstructural Evolution in Metallic Thin Films using *in situ* TEM Deformation

Ehsan Izadi and Jagannathan Rajagopalan, Arizona State University

Research sponsored by the National Science Foundation

Background

- Metallic thin films are widely used as structural and functional components in MEMS, where they are subjected to mechanical deformation.
- Uncovering their deformation processes and quantifying how their microstructure evolves during mechanical loading is key to predicting their failure and improving performance.
- Thin films also provide an ideal platform to probe the fundamental deformation mechanisms that operate in nanostructured materials.

Objectives

- Quantify grain rotations and microstructural evolution in Al films with different textures using MEMS based *in situ* TEM.

Results

Impact / Future work

- Orientation changes in hundreds of grains have been tracked simultaneously during *in situ* TEM deformation of ultrafine-grained aluminum films.
- The *in situ* TEM experiments have provided the first direct evidence for reversible grain rotations and grain/twin boundary migration during loading and unloading.
- Quantification of grain growth and linking it to grain and grain boundary characteristics is currently underway.